$\begin{aligned} & \hline \mathbf{1} \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & X \sim B(10,0.2) \\ & \mathrm{P}(X<4)=\mathrm{P}(X \leq 3)=0.8791 \end{aligned}$ OR attempt to sum $\mathrm{P}(X=0,1,2,3)$ using $X \sim$ $B(10,0.2)$ can score M1, A1	$\begin{aligned} & \text { M1 for } X \leq 3 \\ & \text { A1 } \end{aligned}$	2
(ii)	Let $p=$ the probability that a bowl is imperfect $\begin{aligned} & H_{0}: p=0.2 \quad H_{1}: p<0.2 \\ & \\ & X \sim B(20,0.2) \\ & \mathrm{P}(X \leq 3)=0.2061 \\ & 0.2061>5 \% \end{aligned}$ Cannot reject H_{0} and so insufficient evidence to claim a reduction. OR using critical region method: CR is $\{0\}$ B1, 2 not in CR M1, A1 as above	B1 Definition of p B1, B1 B1 for 0.2061 seen M1 for this comparison A1 dep for comment in context	3
		TOTAL	8

(i)	$X \sim B\left(15, \frac{1}{6}\right)$		
	$P(X=0)=\left(\frac{5}{6}\right)^{15}=0.065$	M1	$\left(\frac{5}{6}\right)^{15}$
(ii)	$P(X=4)=\binom{15}{4} \times\left(\frac{1}{6}\right)^{4} \times\left(\frac{5}{6}\right)^{11}$	M1 cao	$\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)^{11}$
	$=0.142($ or $0.9102-0.7685)$	M1 A1 cao	multiply by $\binom{15}{4}$

(iii)	$\begin{aligned} P(X>3) & =1-P(X \leq 3) \\ & =1-0.7685=0.232 \end{aligned}$	M1 A1	
(iv)		B1	Definition of p
(A)	Let $\mathrm{p}=$ probability of a six on any throw $\begin{array}{ll} H_{0}: p=\frac{1}{6} & H_{1}: p<\frac{1}{6} \\ X \sim B\left(15, \frac{1}{6}\right) & \end{array}$	B1	Both hypotheses
	$P(X=0)=0.065$	M1 M1 dep	0.065
	$0.065<0.1$ and so reject H_{0}	E1 dep	
	Conclude that there is sufficient evidence at the 10% level that the dice are biased against sixes.	B1	Both hypotheses
(B)	Let $\mathrm{p}=$ probability of a six on any throw $H_{0}: p=\frac{1}{6} \quad H_{1}: p>\frac{1}{6}$		
	$\begin{aligned} & X \sim B\left(15, \frac{1}{6}\right) \\ & P(X \geq 5)=1-P(X \leq 4)=1-0.910=0.09 \\ & 0.09<0.1 \text { and so reject } H_{0} \end{aligned}$	M1 M1 dep E1 dep	0.09 Comparison
	Conclude that there is sufficient evidence at the 10% level that the dice are biased in favour of sixes.	$\begin{array}{\|l} \hline \text { E1 } \\ \text { E1 } \end{array}$	Contradictory By chance
(v)	Conclusions contradictory. Even if null hypothesis is true, it will be rejected 10% of the time purely by chance. Or other sensible comments.		

3	Number not turning up $X \sim \mathrm{~B}(16,0.2)$		
(i)	$\mathrm{P}(X=0)=0.8^{16}=0.0281$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$0.8{ }^{16}$ or tables
(ii)	$\begin{aligned} \mathrm{P}(X>3) & =1-\mathrm{P}(X \leq 3) \text { or } \mathrm{P}(X \leq 12) \\ & =1-0.5981=0.4019\end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Manipulation Use of tables
(iii)	$X \sim \mathrm{~B}(17,0.2) \rightarrow \mathrm{P}(X \geq 1)=0.9775$ Greater than 0.9 so acceptable	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \end{aligned}$	$\begin{array}{\|l} \mathrm{B}(17,0.2) \\ 0.9775 \end{array}$
(iv)	$X \sim \mathrm{~B}(18,0.2) \rightarrow \mathrm{P}(X \geq 2)=0.9009$ Can make 18 appointments $X \sim \mathrm{~B}(19,0.2) \rightarrow \mathrm{P}(X \geq 3)=0.7631$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \end{aligned}$	$\begin{aligned} & 18 \text { and } \geq 2 \\ & 0.9009 \\ & 18 \text { ok } \\ & 19 \text { and } \geq 3 \end{aligned}$
(v)	Now X ~ B(20,p) Let p be probability of not turning up. $\begin{aligned} & \mathrm{H}_{0}: \mathrm{p}=0.2 \\ & \mathrm{H}_{1}: \mathrm{p} \neq 0.2 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	
	$\mathrm{P}(X \leq 1)=0.0692>2.5 \%$ cannot reject H_{0} conclude that the proportion of patients not turning up is unchanged.	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \end{aligned}$	0.0692 correct comparison cannot reject H_{0}

